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Introduction

t-Hausdorff Measure

Definition (t-Hausdorff Measure)

For any t ∈ [0,∞), let

Ht
δ(S) = inf

U is an open
cover of S

{ ∞∑
i=1

diam(Ui)
t : Ui ∈ U , diam(Ui) < δ

}
.

The t−dimensional Hausdorff measure is given by

Ht(S) = lim
δ→0

Ht
δ(S).
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t-Hausdorff Measure Visualized

dimH(S) Ht(S)

∞

Figure: An example plot of Ht(S) as a function of t.
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Hausdorff Dimension

Definition (Hausdorff Dimension)

dimH(S) = inf{t ≥ 0 : Ht(S) = 0}.

Hausdorff dimension agrees with standard notions of
dimension.
Hausdorff dimension is a bi-Lipschitz equivalence.
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Two Famous Fractals

(a) The Sierpinski carpet. (b) The Apollonian gasket.

Both of these are the limit set of iterated function systems.
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Iterated Function Systems

Definition (Iterated Function System)

An Iterated Function System (IFS) S = {X,E, {ϕe}e∈E}
consists of:

1 a compact metric space X,
2 a countable set E with at least 2 elements, and
3 a family of injective contractions {ϕe : X → X}e∈E with

uniform Lipschitz constant s ∈ (0, 1).

There is a unique compact set K ⊂ X so that

K = ∪e∈Eϕe(K).

This is called the limit set of the IFS, often denoted JE .
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Hutchinson’s Theorem

Theorem (Hutchinson’s Theorem)

For an IFS S consisting of metric similarities, then

hS = dimH(JS) = inf

{
t ≥ 0 :

∑
e∈E

∥Dϕe∥t∞ < 1

}
.

Due to Hutchinson (1981).

This theorem can readily give the
dimension of the Sierpinski carpet, but does not apply for the
Apollonian gasket.
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An Application of Hutchinson’s Theorem

Figure: The Cantor set generated by ϕ1(x) =
x
3 , ϕ2(x) =

2
3 + x

3 .

∥Dϕ1∥t∞+∥Dϕ2∥t∞ =
1

3

t
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1

3
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1

3

)t

, so 2

(
1

3

)t

= 1 ⇒ t =
log 2

log 3
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Applications of Conformal Dimension Estimates

Dimension estimates for conformal fractals are used in the
following areas:

Zaremba theory (Bourgain and Kontorovich (2014))
Patterson Sullivan Theory
Scattering theory on hyperbolic 3-manifolds (Borthwick,
McRae, and Taylor (1997))
Markov and Lagrange Spectra
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Conformal Dynamics

Linear Conformal Maps

Definition (Linear Conformal Map)

A nonsingular linear map T : Rn → Rn is conformal if one of the
following (equivalent) conditions holds for all x, y ∈ Rn \ {0} :

1 ∠(x, y) = ∠(T (x), T (y)).

2 There exists some λ > 0 such that ⟨T (x), T (y)⟩ = λ⟨x, y⟩.
3 There exists some µ > 0 so that |Tx| = µ|x|.
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Conformal Dynamics

Conformal Diffeomorphisms

Definition (Conformal Diffeomorphism)

For an open set U ⊂ Rn, a C1 diffeomorphism is called
conformal at x ∈ U if it’s derivative Df(x) : Rn → Rn is a linear
conformal map.

For an open set U ⊂ Rn, if f : U → Rn is conformal then
1 if n = 1, f is a monotone C1 diffeomorphism,
2 if n = 2, then f is either holomorphic or antiholomorphic,
3 if n ≥ 3, then f is a Möbius map (Liouville’s Theorem).
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Conformal Iterated Function Systems

An IFS {X,E, {ϕe}e∈E} is called a conformal iterated function
system (CIFS) if the following hold:

1. Int(X) = X.

2. (Open Set Condition) For all distinct a, b ∈ E,

ϕa(Int(X)) ∩ ϕb(Int(X)) = ∅.

3. There exists an open connected set W ⊃ X such that for all
e ∈ E, the maps ϕe extend to conformal maps taking W into W .
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Conformal Iterated Function Systems cont.

4. (Bounded Distortion Property) There exists a compact and
connected set S so that

X ⊂ IntS ⊂ S ⊂ W

and two constants L ≥ 1 and α > 0 such that∣∣∣∣∥Dϕe(x)∥
∥Dϕe(y)∥

− 1

∣∣∣∣ ≤ L|x− y|α

for every e ∈ E and each pair of points x, y ∈ S, where

∥Dϕe(x)∥ = sup{|Dϕe(x)(p)| : p ∈ Rn, |p| ≤ 1}.
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Conformal Dynamics

The Continued Fraction CIFS

The system CFE = {X,E, {ϕe}e∈E} where X = [0, 1], E ⊆ N
and

ϕe(x) =
1

x+ e
.
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(a) E = {1, 2}.
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(b) E = {1, 3, 4, 5, 7, 9, 11}.
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Conformal Dynamics

Graphical Representation

X

ϕ1

ϕ2

An example IFS consisting of two maps.
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Conformal Dynamics

Graph Directed Markov Systems

A graph directed Markov system (GDMS)

S =
{
V,E,A, t, i, {Xv}v∈V , {ϕe}e∈E

}
(1)

as defined in Mauldin-Urbański (2003) consists of
1 a directed multigraph (E, V ) with a countable set of edges

E, called the alphabet of S, and a finite set of vertices V ,
2 an incidence matrix A : E × E → {0, 1},
3 functions i, t : E → V so that t(a) = i(b) whenever Aab = 1,
4 a family of non-empty compact metric spaces {Xv}v∈V ,
5 a family of injective contractions{

ϕe : Xt(e) → Xi(e)

}
e∈E

with uniform Lipschitz constant s ∈ (0, 1).
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Conformal Dynamics

GDMS Example

X1 X2

X3

ϕ21

ϕ12ϕ31
ϕ13

ϕ32

ϕ23

ϕ11 ϕ22

ϕ33

An example graph directed Markov system (GDMS).
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GDMS with Removed Edges

X1 X2

X3

ϕ21

ϕ12

ϕ13
ϕ32

ϕ11 ϕ22

ϕ33

Removing edges from a GDMS.
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Conformal Dynamics

CGDMS

A GDMS is called a conformal graph directed Markov system if
it consists of conformal diffeomorphisms.

Figure: Schottky groups are natural examples of CGDMSs.
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Thermodynamic Formalism

Symbolic Dynamics pt 1

For n ∈ N, let

En
A =

{
ω ∈ En : Aωiωi+1 = 1, i ∈ {1, 2, . . . , n− 1}

}
.

En
A is the set of words of length n. The set of words of finite

length is E∗
A, and the set of all infinite words is EN

A.
Given τ ∈ En

A, the map coded by τ is given by

ϕτ = ϕτ1 ◦ ϕτ2 ◦ · · · ◦ ϕτn : X → X, where τ ∈ En
A.
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Thermodynamic Formalism

Symbolic Dynamics pt 2

For any ω ∈ EN
A, (ϕω|n(X))∞n=1 is a descending sequence of

compact sets. By Cantor’s Intersection Theorem⋂
n∈N

ϕω|n(X)

is singleton. Define the coding map by

π : EN
A → X, π : ω 7→

⋂
n∈N

ϕω|n(X).

The limit set of S is JE = π(EN
A).
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Topological Pressure

Given some n ∈ N, t ≥ 0, the n-th partition function is defined
as

Zn(t) =
∑
ω∈En

A

∥Dϕω∥t∞.

As a sequence, (Zn(t))
∞
n=1 is submultiplicative, implying that

(logZn(t))
∞
n=1 is subadditive. The topological pressure is

defined as

P (t) = lim
n→∞

log(Zn(t))

n
= inf

n∈N

log(Zn(t))

n
.
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Thermodynamic Formalism

Dimension Theory: Definitions

A nonnegative number t belongs to Fin(S) if

Z1(t) =
∑
e∈E

∥Dϕe∥t∞ < ∞.

The number
hS := inf {t ≥ 0 : P (t) ≤ 0}

is called Bowen’s parameter. The θ-number for S is given by

θ := θS = inf Fin(S).
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Properties of the Pressure Function

For a CGDMS S, the following conclusions hold:
1 Fin(S) = {t ≥ 0 : P (t) < ∞}.
2 θ = inf{t ≥ 0 : P (t) < ∞}.
3 The topological pressure P is strictly decreasing on [θ,∞)

with P (t) → −∞ as t → ∞. Moreover, P is convex on the
closure of Fin(S).

4 P (0) = ∞ if and only if E is infinite.
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Thermodynamic Formalism

Pressure Visualized

h1 h2

−4

−2

2

4

P1(t)

P2(t)

θ1

Figure: Two example pressure functions P1(t) and P2(t).
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Thermodynamic Formalism

Bowen’s Formula

Theorem (Bowen’s Formula)

If S is a CGDMS, then

hS := dimH(JS) = sup {dimH(JF ) : F ⊂ E is finite} .

Due to Mauldin and Urbański: (1996) for CIFSs, (2003) for
CGDMSs.

This is a key tool in rigorous dimension estimates, but
computing P (t) directly is unfeasible.
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Due to Mauldin and Urbański: (1996) for CIFSs, (2003) for
CGDMSs.
This is a key tool in rigorous dimension estimates, but
computing P (t) directly is unfeasible.



Rigorous Dimension Estimates for Fractals and How to Find Them

Thermodynamic Formalism

The Symbolic Transfer Operator

Suppose S is a conformal GDMS (CGDMS) and t ∈ Fin(S).

Definition (Symbolic Transfer Operator)

For g ∈ Cb(E
N
A) and ω ∈ EN

A, the symbolic transfer operator is
given by Lt : Cb(E

N
A) → Cb(E

N
A)

Ltg(ω) =
∑

i:Aiω1
=1

g(iω)∥Dϕi(π(ω)∥t.
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Thermodynamic Formalism

Spectral Properties

The following theorem was proven in Mauldin-Urbański (2003)

Theorem

The spectral radius of Lt is eP (t). This eigenvalue is isolated,
corresponds to the unique, positive eigenfunction ρt of Lt, and

ρt =
dµt

dmt
,

where µt is the pushforward of the unique shift-invariant Gibb’s
measure and mt is the t-conformal measure.

This theorem allows for the use of Rayleigh quotients to
calculate λt := eP (t).
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The Spatial Transfer Operator

Theorem (Chousionis, Leykekhman, Urbański, W)

Suppose that S is a finitely irreducible, maximal CGDMS, and
let t ∈ [0,∞) be so that P (t) < ∞. Then:

1 There exists a unique continuous function ρt : X → [0,∞)
so that

Ftρt = ρt and
∫

ρtdmt = 1.

2 K−t ≤ ρt ≤ Kt/Mt where Mt = min{mt(Xv) : v ∈ v}.
3 The sequence {Fn

t (1)}∞n=1 converges uniformly to ρt on X.
4 ρt|JS = dµt

dmt
.

5 ρt can be extended to a real analytic function in an open
neighborhood of X.
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Thermodynamic Formalism

Spectral Properties 2

The spatial transfer operator has the same spectral properties
as the symbolic one. That is,

The leading eigenvalue λt of Ft is eP (t).
λt corresponds to the unique positive eigenfunction of Ft.
There is a spectral gap.
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Discretizing C(X)

Suppose that Xh is a conformal mesh of X with nodes {xj}Nj=1.
For τ ∈ Xh let hτ = diam(τ) and define h = maxτ∈Xh hτ .
Consider the space

Sh := {v ∈ C(X) : v ∈ P1(τ) for all τ ∈ Xh}

with nodal basis {ϕj}Nj=1, and the interpolation operator

Ih(v)(x) =
N∑
j=1

v(xj)ϕj(x), Ih : C(X) → Sh.
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A Mesh and a Basis Function

(a) An example mesh of D. (b) A shape function on the mesh.
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Numerical Method

Bramble-Hilbert

Set ρIt = Ihρt. Then, as an application of the Bramble-Hilbert
Lemma, ∥∥ρt − ρIt

∥∥
∞ ≤ CBHh2

∥∥D2ρt
∥∥
∞

for a computable constant CBH . A bound on
∥∥D2ρt

∥∥
∞, uniform

in h, is enough for convergence of the method. Our method
uses a bound of the form∥∥D2ρt

∥∥
∞ ≤ C∥ρt∥∞,

to imply
∥∥ρt − ρIt

∥∥
∞ will decrease on the order of h2.
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Numerical Method

Eigenfunction Estimates

Theorem (Chousionis, Leykekhman, Urbański, W)

Let S = be a a finitely irreducible, maximal CGDMS. If
t ∈ Fin(S), and α is any multiindex, then there are computable
constants C(α, t, n) and C2(α, t) so that

1 if n ≥ 3,

|Dαρt(x)| ≤ C(α, t, n)ρt(y), ∀x, y ∈ Xv, v ∈ V, and (2)

2 if n = 2, then

|Dαρt(x)| ≤ C2(α, t)ρt(x), ∀x ∈ X. (3)
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Bounding
∥∥ρt − ρIt

∥∥
∞

For any τ ∈ Xh and any x ∈ τ , set

errτ = CBH(c1hτ + 1)c2h
2
τ

where c1 and c2 correspond to the previous derivative bounds
with α = 1, 2. Then,

(1− errτ )ρ
I
t (x) ≤ ρt(x) ≤ (1 + errτ )ρ

I
t (x)

and

(1− errτ )Ftρ
I
t (x) ≤ Ftρt(x) ≤ (1 + errτ )Ftρ

I
t (x).
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Finding ρIt

To find ρIt we assemble discrete versions of Ft. Define two
matrices At, Bt ∈ RN×N such that

(Atα)j := (1− err)
∑
e∈EA

∥Dϕe(xj)∥tIhρt(ϕe(xj))χXt(e)
(xj)

(Btα)j := (1 + err)
∑
e∈EA

∥Dϕe(xj)∥tIhρt(ϕe(xj))χXt(e)
(xj).

Then ρIt = Ih(ρt) may be found using barycentric
approximation to assemble the appropriate approximation
matrix and finding its leading eigenvector.
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Results for Positive Matrices

The following lemma was used by Falk and Nussbaum (2016),
and is a key to our rigorous approximation results.

Lemma

Suppose that M is a non-negative, N ×N matrix. For a strictly
positive vector w ∈ RN ,

if Mw ≥ λw, then r(M) ≥ λ

if Mw ≤ λw, then r(M) ≤ λ.
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Numerical Method

Dimension Bounds

Combining all of these results, setting αt to be the vector in RN

with entries (αt)j = ρIt (xj) = ρt(xj), one has

(Atαt)j ≤ Ftρt(xj) = λtρt(xj) and (Btαt)j ≥ Ftρt(xj) = λtρt(xj).

Therefore,
r(At) ≤ λt ≤ r(Bt),

and bisection method may be applied to find rigorous bounds
on Hausdorff dimension.



Rigorous Dimension Estimates for Fractals and How to Find Them

Results and Future Work

Specific Dimension Estimates

Table: Hausdorff dimension estimates for various examples.

Example Hausdorff dimension
2D Continued fractions with 4 generators 1.149576 ± 5.5e − 06

2D Continued fractions 1.853 ± 4.2e − 03
2D Continued fractions on Gaussian primes 1.510 ± 4.0e − 03
3D Continued fractions with 5 generators 1.452 ± 9.7e − 03

3D Continued fractions 2.57 ± 1.7e − 02
A quadratic abc-example 0.6327142857142865 ± 5.0e − 16

An example of a Schottky group 0.7753714285 ± 1.5e − 10
12 map Apollonian subsystem 1.0285714285713 ± 1.1e − 13

Apollonian gasket 1.30565 ± 5e − 05
Apollonian gasket without a generator 1.2196 ± 2e − 04

Apollonian gasket without a spiral 1.2351 ± 5.5e − 04
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A Fractal Meshing Algorithm

Figure: The eigenfunction approximation for the Apollonian gasket
over a fractal mesh.
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Future Work

What numerical methods can be applied to increase the
accuracy of our estimates and improve there run-time?

How can we generalize this to different spaces? Are there
better bounds we can find thanks to Liouville’s theorem?
Can we apply this to solve the Texan Conjecture for
different systems?
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Thanks for Coming

Thank you for coming!
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