Rigorous Dimension Estimates for Fractals and How to Find Them

Erik Wendt, joint with V. Chousionis, D. Leykekhman, and M. Urbański

University of Connecticut

October 2024

t-Hausdorff Measure

Definition (t-Hausdorff Measure)

For any $t \in [0, \infty)$, let

$$\mathcal{H}^t_{\delta}(S) = \inf_{\substack{\mathcal{U} \text{ is an open } \\ \text{cover of } S}} \left\{ \sum_{i=1}^{\infty} \textit{diam}(U_i)^t : U_i \in \mathcal{U}, \ \textit{diam}(U_i) < \delta \right\}.$$

The t-dimensional Hausdorff measure is given by

$$\mathcal{H}^t(S) = \lim_{\delta \to 0} \mathcal{H}^t_{\delta}(S).$$

t-Hausdorff Measure Visualized

Figure: An example plot of $\mathcal{H}^t(S)$ as a function of t.

Hausdorff Dimension

Definition (Hausdorff Dimension)

$$\dim_{\mathcal{H}}(S) = \inf\{t \ge 0 : \mathcal{H}^t(S) = 0\}.$$

Hausdorff Dimension

Definition (Hausdorff Dimension)

$$\dim_{\mathcal{H}}(S) = \inf\{t \ge 0 : \mathcal{H}^t(S) = 0\}.$$

 Hausdorff dimension agrees with standard notions of dimension.

Hausdorff Dimension

Definition (Hausdorff Dimension)

$$\dim_{\mathcal{H}}(S) = \inf\{t \ge 0 : \mathcal{H}^t(S) = 0\}.$$

- Hausdorff dimension agrees with standard notions of dimension.
- Hausdorff dimension is a *bi-Lipschitz* equivalence.

Two Famous Fractals

Both of these are the limit set of iterated function systems.

Iterated Function Systems

Definition (Iterated Function System)

An Iterated Function System (IFS) $S = \{X, E, \{\phi_e\}_{e \in E}\}$ consists of:

- 1 a compact metric space X,
- $\mathbf{2}$ a countable set E with at least 2 elements, and
- 3 a family of injective contractions $\{\phi_e: X \to X\}_{e \in E}$ with uniform Lipschitz constant $s \in (0,1)$.

There is a unique compact set $K \subset X$ so that

$$K = \cup_{e \in E} \phi_e(K).$$

This is called the *limit set* of the IFS, often denoted J_E .

Hutchinson's Theorem

Theorem (Hutchinson's Theorem)

For an IFS S consisting of metric similarities, then

$$h_{\mathcal{S}} = \dim_{\mathcal{H}}(J_{\mathcal{S}}) = \inf \left\{ t \ge 0 : \sum_{e \in E} \|D\phi_e\|_{\infty}^t < 1 \right\}.$$

Due to Hutchinson (1981).

Hutchinson's Theorem

Theorem (Hutchinson's Theorem)

For an IFS S consisting of metric similarities, then

$$h_{\mathcal{S}} = \dim_{\mathcal{H}}(J_{\mathcal{S}}) = \inf \left\{ t \ge 0 : \sum_{e \in E} \|D\phi_e\|_{\infty}^t < 1 \right\}.$$

Due to Hutchinson (1981). This theorem can readily give the dimension of the Sierpinski carpet, but does not apply for the Apollonian gasket.

An Application of Hutchinson's Theorem

Figure: The Cantor set generated by $\phi_1(x) = \frac{x}{3}$, $\phi_2(x) = \frac{2}{3} + \frac{x}{3}$.

An Application of Hutchinson's Theorem

Figure: The Cantor set generated by $\phi_1(x) = \frac{x}{3}, \, \phi_2(x) = \frac{2}{3} + \frac{x}{3}.$

$$\|D\phi_1\|_{\infty}^t + \|D\phi_2\|_{\infty}^t = \frac{1}{3}^t + \frac{1}{3}^t = 2\left(\frac{1}{3}\right)^t, \text{ so } 2\left(\frac{1}{3}\right)^t = 1 \Rightarrow t = \frac{\log 2}{\log 3}.$$

Applications of Conformal Dimension Estimates

Dimension estimates for conformal fractals are used in the following areas:

- Zaremba theory (Bourgain and Kontorovich (2014))
- Patterson Sullivan Theory
- Scattering theory on hyperbolic 3-manifolds (Borthwick, McRae, and Taylor (1997))
- Markov and Lagrange Spectra

Linear Conformal Maps

Definition (Linear Conformal Map)

A nonsingular linear map $T: \mathbb{R}^n \to \mathbb{R}^n$ is conformal if one of the following (equivalent) conditions holds for all $x, y \in \mathbb{R}^n \setminus \{0\}$:

- **2** There exists some $\lambda > 0$ such that $\langle T(x), T(y) \rangle = \lambda \langle x, y \rangle$.
- **3** There exists some $\mu > 0$ so that $|Tx| = \mu |x|$.

Conformal Diffeomorphisms

Definition (Conformal Diffeomorphism)

For an open set $U \subset \mathbb{R}^n$, a C^1 diffeomorphism is called conformal at $x \in U$ if it's derivative $Df(x) : \mathbb{R}^n \to \mathbb{R}^n$ is a linear conformal map.

Conformal Diffeomorphisms

Definition (Conformal Diffeomorphism)

For an open set $U \subset \mathbb{R}^n$, a C^1 diffeomorphism is called conformal at $x \in U$ if it's derivative $Df(x) : \mathbb{R}^n \to \mathbb{R}^n$ is a linear conformal map.

For an open set $U \subset \mathbb{R}^n$, if $f: U \to \mathbb{R}^n$ is conformal then

- **1** if n = 1, f is a monotone C^1 diffeomorphism,
- 2 if n=2, then f is either holomorphic or antiholomorphic,
- 3 if $n \ge 3$, then f is a Möbius map (Liouville's Theorem).

Conformal Iterated Function Systems

An IFS $\{X, E, \{\phi_e\}_{e \in E}\}$ is called a *conformal iterated function system* (CIFS) if the following hold:

- 1. $\overline{\operatorname{Int}(X)} = X$.
- 2. (Open Set Condition) For all distinct $a, b \in E$,

$$\phi_a(\operatorname{Int}(X)) \cap \phi_b(\operatorname{Int}(X)) = \emptyset.$$

3. There exists an open connected set $W \supset X$ such that for all $e \in E$, the maps ϕ_e extend to conformal maps taking W into W.

Conformal Iterated Function Systems cont.

4. (*Bounded Distortion Property*) There exists a compact and connected set *S* so that

$$X \subset \operatorname{Int} S \subset S \subset W$$

and two constants $L \ge 1$ and $\alpha > 0$ such that

$$\left| \frac{\|D\phi_e(x)\|}{\|D\phi_e(y)\|} - 1 \right| \le L|x - y|^{\alpha}$$

for every $e \in E$ and each pair of points $x, y \in S$, where

$$||D\phi_e(x)|| = \sup\{|D\phi_e(x)(p)| : p \in \mathbb{R}^n, |p| \le 1\}.$$

The Continued Fraction CIFS

The system $\mathcal{CF}_E=\{X,E,\{\phi_e\}_{e\in E}\}$ where $X=[0,1],\,E\subseteq\mathbb{N}$ and

$$\phi_e(x) = \frac{1}{x+e}.$$

(a)
$$E = \{1, 2\}.$$

(b)
$$E = \{1, 3, 4, 5, 7, 9, 11\}.$$

Graphical Representation

An example IFS consisting of two maps.

Graph Directed Markov Systems

A graph directed Markov system (GDMS)

$$S = \{V, E, A, t, i, \{X_v\}_{v \in V}, \{\phi_e\}_{e \in E}\}$$
(1)

as defined in Mauldin-Urbański (2003) consists of

- 1 a directed multigraph (E, V) with a countable set of edges E, called the *alphabet* of S, and a finite set of vertices V,
- 2 an incidence matrix $A: E \times E \rightarrow \{0,1\}$,
- 3 functions $i, t: E \to V$ so that t(a) = i(b) whenever $A_{ab} = 1$,
- 4 a family of non-empty compact metric spaces $\{X_v\}_{v \in V}$,
- 5 a family of injective contractions

$$\left\{\phi_e: X_{t(e)} \to X_{i(e)}\right\}_{e \in E}$$

with uniform Lipschitz constant $s \in (0,1)$.

GDMS Example

An example graph directed Markov system (GDMS).

GDMS with Removed Edges

Removing edges from a GDMS.

CGDMS

A GDMS is called a *conformal graph directed Markov system* if it consists of conformal diffeomorphisms.

Figure: Schottky groups are natural examples of CGDMSs.

Symbolic Dynamics pt 1

For $n \in \mathbb{N}$, let

$$E_A^n = \{ \omega \in E^n : A_{\omega_i \omega_{i+1}} = 1, i \in \{1, 2, \dots, n-1\} \}.$$

 E_A^n is the set of *words* of length n. The set of *words of finite length* is E_A^* , and the set of all *infinite words* is $E_A^\mathbb{N}$. Given $\tau \in E_A^n$, the map coded by τ is given by

$$\phi_{\tau} = \phi_{\tau_1} \circ \phi_{\tau_2} \circ \cdots \circ \phi_{\tau_n} : X \to X$$
, where $\tau \in E_A^n$.

Symbolic Dynamics pt 2

For any $\omega\in E_A^{\mathbb{N}}$, $(\phi_{\omega|_n}(X))_{n=1}^{\infty}$ is a descending sequence of compact sets. By *Cantor's Intersection Theorem*

$$\bigcap_{n\in\mathbb{N}} \phi_{\omega|_n}(X)$$

is singleton. Define the coding map by

$$\pi: E_A^{\mathbb{N}} \to X, \ \pi: \omega \mapsto \bigcap_{n \in \mathbb{N}} \phi_{\omega|_n}(X).$$

The limit set of S is $J_E = \pi(E_A^{\mathbb{N}})$.

Topological Pressure

Given some $n \in \mathbb{N}$, $t \ge 0$, the *n*-th partition function is defined as

$$Z_n(t) = \sum_{\omega \in E_A^n} \|D\phi_\omega\|_{\infty}^t.$$

As a sequence, $(Z_n(t))_{n=1}^\infty$ is submultiplicative, implying that $(\log Z_n(t))_{n=1}^\infty$ is subadditive. The *topological pressure* is defined as

$$P(t) = \lim_{n \to \infty} \frac{\log(Z_n(t))}{n} = \inf_{n \in \mathbb{N}} \frac{\log(Z_n(t))}{n}.$$

Dimension Theory: Definitions

A nonnegative number t belongs to Fin(S) if

$$Z_1(t) = \sum_{e \in E} \|D\phi_e\|_{\infty}^t < \infty.$$

The number

$$h_{\mathcal{S}} := \inf \{ t \ge 0 : P(t) \le 0 \}$$

is called *Bowen's parameter*. The θ -number for S is given by

$$\theta := \theta_{\mathcal{S}} = \inf \mathsf{Fin}(\mathcal{S}).$$

Properties of the Pressure Function

For a CGDMS S, the following conclusions hold:

- 1 Fin(S) = $\{t \ge 0 : P(t) < \infty\}$.
- $\theta = \inf\{t \ge 0 : P(t) < \infty\}.$
- 3 The topological pressure P is strictly decreasing on $[\theta, \infty)$ with $P(t) \to -\infty$ as $t \to \infty$. Moreover, P is convex on the closure of $\mathsf{Fin}(\mathcal{S})$.
- 4 $P(0) = \infty$ if and only if E is infinite.

Pressure Visualized

Figure: Two example pressure functions $P_1(t)$ and $P_2(t)$.

Bowen's Formula

Theorem (Bowen's Formula)

If S is a CGDMS, then

$$h_{\mathcal{S}} := \dim_{\mathcal{H}}(J_{\mathcal{S}}) = \sup \{ \dim_{\mathcal{H}}(J_F) : F \subset E \text{ is finite} \}.$$

Due to Mauldin and Urbański: (1996) for CIFSs, (2003) for CGDMSs.

Bowen's Formula

Theorem (Bowen's Formula)

If S is a CGDMS, then

$$h_{\mathcal{S}} := \dim_{\mathcal{H}}(J_{\mathcal{S}}) = \sup \{\dim_{\mathcal{H}}(J_F) : F \subset E \text{ is finite}\}.$$

Due to Mauldin and Urbański: (1996) for CIFSs, (2003) for CGDMSs.

This is a key tool in rigorous dimension estimates, but computing P(t) directly is unfeasible.

The Symbolic Transfer Operator

Suppose S is a conformal GDMS (CGDMS) and $t \in Fin(S)$.

Definition (Symbolic Transfer Operator)

For $g \in C_b(E_A^{\mathbb{N}})$ and $\omega \in E_A^{\mathbb{N}}$, the symbolic transfer operator is given by $\mathcal{L}_t : C_b(E_A^{\mathbb{N}}) \to C_b(E_A^{\mathbb{N}})$

$$\mathcal{L}_t g(\omega) = \sum_{i: A_{i\omega_1} = 1} g(i\omega) \|D\phi_i(\pi(\omega))\|^t.$$

Spectral Properties

The following theorem was proven in Mauldin-Urbański (2003)

Theorem

The spectral radius of \mathcal{L}_t is $e^{P(t)}$. This eigenvalue is isolated, corresponds to the unique, positive eigenfunction ρ_t of \mathcal{L}_t , and

$$\rho_t = \frac{d\mu_t}{dm_t},$$

where μ_t is the pushforward of the unique shift-invariant Gibb's measure and m_t is the t-conformal measure.

This theorem allows for the use of *Rayleigh quotients* to calculate $\lambda_t := e^{P(t)}$.

The Spatial Transfer Operator

Theorem (Chousionis, Leykekhman, Urbański, W)

Suppose that $\mathcal S$ is a finitely irreducible, maximal CGDMS, and let $t\in[0,\infty)$ be so that $P(t)<\infty$. Then:

1 There exists a unique continuous function $\rho_t: X \to [0, \infty)$ so that

$$F_t
ho_t =
ho_t$$
 and $\int
ho_t dm_t = 1$.

- 2 $K^{-t} \le \rho_t \le K^t/M_t$ where $M_t = \min\{m_t(X_v) : v \in v\}$.
- The sequence $\{F_t^n(1)\}_{n=1}^{\infty}$ converges uniformly to ρ_t on X.
- $\rho_t|_{J_{\mathcal{S}}} = \frac{d\mu_t}{dm_t}.$
- ρ_t can be extended to a real analytic function in an open neighborhood of X.

Spectral Properties 2

The spatial transfer operator has the same spectral properties as the symbolic one. That is,

- The leading eigenvalue λ_t of F_t is $e^{P(t)}$.
- lacksquare λ_t corresponds to the unique positive eigenfunction of F_t .
- There is a spectral gap.

Discretizing C(X)

Suppose that X^h is a *conformal mesh* of X with nodes $\{x_j\}_{j=1}^N$. For $\tau \in X^h$ let $h_\tau = \operatorname{diam}(\tau)$ and define $h = \max_{\tau \in X^h} h_\tau$. Consider the space

$$S_h := \{ v \in C(X) : v \in \mathcal{P}_1(\tau) \text{ for all } \tau \in X^h \}$$

with nodal basis $\{\phi_j\}_{j=1}^N$, and the *interpolation operator*

$$\mathcal{I}_h(v)(x) = \sum_{j=1}^N v(x_j)\phi_j(x), \quad \mathcal{I}_h: C(X) \to S_h.$$

A Mesh and a Basis Function

(a) An example mesh of \mathbb{D} .

(b) A shape function on the mesh.

Bramble-Hilbert

Set $\rho_t^I = \mathcal{I}_h \rho_t$. Then, as an application of the *Bramble-Hilbert* Lemma,

$$\left\| \rho_t - \rho_t^I \right\|_{\infty} \le C_{BH} h^2 \left\| D^2 \rho_t \right\|_{\infty}$$

for a computable constant C_{BH} . A bound on $\left\|D^2\rho_t\right\|_{\infty}$, uniform in h, is enough for convergence of the method. Our method uses a bound of the form

$$||D^2 \rho_t||_{\infty} \le C ||\rho_t||_{\infty},$$

to imply $\|\rho_t - \rho_t^I\|_{\infty}$ will decrease on the order of h^2 .

Eigenfunction Estimates

Theorem (Chousionis, Leykekhman, Urbański, W)

Let S = be a a finitely irreducible, maximal CGDMS. If $t \in Fin(S)$, and α is any multiindex, then there are computable constants $C(\alpha, t, n)$ and $C_2(\alpha, t)$ so that

$$|D^{\alpha}\rho_t(x)| \leq C(\alpha, t, n)\rho_t(y), \quad \forall x, y \in X_v, v \in V, \text{ and } (2)$$

2 if n=2, then

$$|D^{\alpha}\rho_t(x)| \le C_2(\alpha, t)\rho_t(x), \quad \forall x \in X.$$
 (3)

Bounding $\|\rho_t - \rho_t^I\|_{\infty}$

For any $\tau \in X^h$ and any $x \in \tau$, set

$$err_{\tau} = C_{BH}(c_1h_{\tau} + 1)c_2h_{\tau}^2$$

where c_1 and c_2 correspond to the previous derivative bounds with $\alpha=1,2.$ Then,

$$(1 - err_{\tau})\rho_t^I(x) \le \rho_t(x) \le (1 + err_{\tau})\rho_t^I(x)$$

and

$$(1 - err_{\tau})F_t \rho_t^I(x) \le F_t \rho_t(x) \le (1 + err_{\tau})F_t \rho_t^I(x).$$

Finding ρ_t^I

To find ρ_t^I we assemble discrete versions of F_t . Define two matrices $A_t, B_t \in \mathbb{R}^{N \times N}$ such that

$$\begin{split} (A_t\alpha)_j &:= (1-\operatorname{err}) \sum_{e \in E_A} \|D\phi_e(x_j)\|^t \mathcal{I}_h \rho_t(\phi_e(x_j)) \chi_{X_{t(e)}}(x_j) \\ (B_t\alpha)_j &:= (1+\operatorname{err}) \sum_{e \in E_A} \|D\phi_e(x_j)\|^t \mathcal{I}_h \rho_t(\phi_e(x_j)) \chi_{X_{t(e)}}(x_j). \end{split}$$

Then $\rho_t^I = \mathcal{I}_h(\rho_t)$ may be found using *barycentric* approximation to assemble the appropriate approximation matrix and finding its leading eigenvector.

Results for Positive Matrices

The following lemma was used by Falk and Nussbaum (2016), and is a key to our rigorous approximation results.

Lemma

Suppose that M is a non-negative, $N \times N$ matrix. For a strictly positive vector $w \in \mathbb{R}^N$,

if
$$Mw \ge \lambda w$$
, then $r(M) \ge \lambda$

if
$$Mw \le \lambda w$$
, then $r(M) \le \lambda$.

Dimension Bounds

Combining all of these results, setting α_t to be the vector in \mathbb{R}^N with entries $(\alpha_t)_i = \rho_t^I(x_i) = \rho_t(x_i)$, one has

$$(A_t\alpha_t)_j \leq F_t\rho_t(x_j) = \lambda_t\rho_t(x_j) \text{ and } (B_t\alpha_t)_j \geq F_t\rho_t(x_j) = \lambda_t\rho_t(x_j).$$

Therefore,

$$r(A_t) \le \lambda_t \le r(B_t),$$

and bisection method may be applied to find rigorous bounds on Hausdorff dimension.

Specific Dimension Estimates

Table: Hausdorff dimension estimates for various examples.

Example	Hausdorff dimension
2D Continued fractions with 4 generators	$1.149576 \pm 5.5e - 06$
2D Continued fractions	$1.853 \pm 4.2e - 03$
2D Continued fractions on Gaussian primes	$1.510 \pm 4.0e - 03$
3D Continued fractions with 5 generators	$1.452 \pm 9.7e - 03$
3D Continued fractions	$2.57 \pm 1.7e - 02$
A quadratic abc-example	$0.6327142857142865 \pm 5.0e - 16$
An example of a Schottky group	$0.7753714285 \pm 1.5e - 10$
12 map Apollonian subsystem	$1.0285714285713 \pm 1.1e - 13$
Apollonian gasket	$1.30565 \pm 5e - 05$
Apollonian gasket without a generator	$1.2196 \pm 2e - 04$
Apollonian gasket without a spiral	$1.2351 \pm 5.5e - 04$

A Fractal Meshing Algorithm

Figure: The eigenfunction approximation for the Apollonian gasket over a fractal mesh.

Future Work

What numerical methods can be applied to increase the accuracy of our estimates and improve there run-time?

Future Work

- What numerical methods can be applied to increase the accuracy of our estimates and improve there run-time?
- How can we generalize this to different spaces? Are there better bounds we can find thanks to Liouville's theorem?

Future Work

- What numerical methods can be applied to increase the accuracy of our estimates and improve there run-time?
- How can we generalize this to different spaces? Are there better bounds we can find thanks to Liouville's theorem?
- Can we apply this to solve the Texan Conjecture for different systems?

Results and Future Work

Thanks for Coming

Thank you for coming!